Metamath Proof Explorer


Theorem spanss

Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spanss B A B span A span B

Proof

Step Hyp Ref Expression
1 sstr2 A B B x A x
2 1 ralrimivw A B x S B x A x
3 ss2rab x S | B x x S | A x x S B x A x
4 2 3 sylibr A B x S | B x x S | A x
5 intss x S | B x x S | A x x S | A x x S | B x
6 4 5 syl A B x S | A x x S | B x
7 6 adantl B A B x S | A x x S | B x
8 sstr A B B A
9 8 ancoms B A B A
10 spanval A span A = x S | A x
11 9 10 syl B A B span A = x S | A x
12 spanval B span B = x S | B x
13 12 adantr B A B span B = x S | B x
14 7 11 13 3sstr4d B A B span A span B