Metamath Proof Explorer


Theorem spanun

Description: The span of a union is the subspace sum of spans. (Contributed by NM, 9-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion spanun A B span A B = span A + span B

Proof

Step Hyp Ref Expression
1 uneq1 A = if A A A B = if A A B
2 1 fveq2d A = if A A span A B = span if A A B
3 fveq2 A = if A A span A = span if A A
4 3 oveq1d A = if A A span A + span B = span if A A + span B
5 2 4 eqeq12d A = if A A span A B = span A + span B span if A A B = span if A A + span B
6 uneq2 B = if B B if A A B = if A A if B B
7 6 fveq2d B = if B B span if A A B = span if A A if B B
8 fveq2 B = if B B span B = span if B B
9 8 oveq2d B = if B B span if A A + span B = span if A A + span if B B
10 7 9 eqeq12d B = if B B span if A A B = span if A A + span B span if A A if B B = span if A A + span if B B
11 sseq1 A = if A A A if A A
12 sseq1 = if A A if A A
13 ssid
14 11 12 13 elimhyp if A A
15 sseq1 B = if B B B if B B
16 sseq1 = if B B if B B
17 15 16 13 elimhyp if B B
18 14 17 spanuni span if A A if B B = span if A A + span if B B
19 5 10 18 dedth2h A B span A B = span A + span B