Metamath Proof Explorer


Theorem spc2d

Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017)

Ref Expression
Hypotheses spc2ed.x x χ
spc2ed.y y χ
spc2ed.1 φ x = A y = B ψ χ
Assertion spc2d φ A V B W x y ψ χ

Proof

Step Hyp Ref Expression
1 spc2ed.x x χ
2 spc2ed.y y χ
3 spc2ed.1 φ x = A y = B ψ χ
4 2nalexn ¬ x y ψ x y ¬ ψ
5 4 con1bii ¬ x y ¬ ψ x y ψ
6 1 nfn x ¬ χ
7 2 nfn y ¬ χ
8 3 notbid φ x = A y = B ¬ ψ ¬ χ
9 6 7 8 spc2ed φ A V B W ¬ χ x y ¬ ψ
10 9 con1d φ A V B W ¬ x y ¬ ψ χ
11 5 10 syl5bir φ A V B W x y ψ χ