Metamath Proof Explorer


Theorem spc2ev

Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995)

Ref Expression
Hypotheses spc2ev.1 A V
spc2ev.2 B V
spc2ev.3 x = A y = B φ ψ
Assertion spc2ev ψ x y φ

Proof

Step Hyp Ref Expression
1 spc2ev.1 A V
2 spc2ev.2 B V
3 spc2ev.3 x = A y = B φ ψ
4 3 spc2egv A V B V ψ x y φ
5 1 2 4 mp2an ψ x y φ