Metamath Proof Explorer
Description: Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995)
|
|
Ref |
Expression |
|
Hypotheses |
spc2ev.1 |
|
|
|
spc2ev.2 |
|
|
|
spc2ev.3 |
|
|
Assertion |
spc2ev |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
spc2ev.1 |
|
2 |
|
spc2ev.2 |
|
3 |
|
spc2ev.3 |
|
4 |
3
|
spc2egv |
|
5 |
1 2 4
|
mp2an |
|