Metamath Proof Explorer


Theorem spc3egv

Description: Existential specialization with three quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 25-Aug-2023)

Ref Expression
Hypothesis spc3egv.1 x = A y = B z = C φ ψ
Assertion spc3egv A V B W C X ψ x y z φ

Proof

Step Hyp Ref Expression
1 spc3egv.1 x = A y = B z = C φ ψ
2 elex A V A V
3 elex B W B V
4 elex C X C V
5 simp1 A V B V C V A V
6 1 3coml y = B z = C x = A φ ψ
7 6 3expa y = B z = C x = A φ ψ
8 7 pm5.74da y = B z = C x = A φ x = A ψ
9 8 spc2egv B V C V x = A ψ y z x = A φ
10 19.37v z x = A φ x = A z φ
11 10 exbii y z x = A φ y x = A z φ
12 19.37v y x = A z φ x = A y z φ
13 11 12 bitri y z x = A φ x = A y z φ
14 9 13 syl6ib B V C V x = A ψ x = A y z φ
15 14 pm2.86d B V C V x = A ψ y z φ
16 15 3adant1 A V B V C V x = A ψ y z φ
17 16 imp A V B V C V x = A ψ y z φ
18 5 17 spcimedv A V B V C V ψ x y z φ
19 2 3 4 18 syl3an A V B W C X ψ x y z φ