Metamath Proof Explorer


Theorem spcegv

Description: Existential specialization, using implicit substitution. (Contributed by NM, 14-Aug-1994) Avoid ax-10 , ax-11 . (Revised by Wolf Lammen, 25-Aug-2023)

Ref Expression
Hypothesis spcgv.1 x = A φ ψ
Assertion spcegv A V ψ x φ

Proof

Step Hyp Ref Expression
1 spcgv.1 x = A φ ψ
2 elisset A V x x = A
3 1 biimprcd ψ x = A φ
4 3 eximdv ψ x x = A x φ
5 2 4 syl5com A V ψ x φ