Metamath Proof Explorer


Theorem spcgf

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by NM, 2-Feb-1997) (Revised by Andrew Salmon, 12-Aug-2011)

Ref Expression
Hypotheses spcgf.1 _ x A
spcgf.2 x ψ
spcgf.3 x = A φ ψ
Assertion spcgf A V x φ ψ

Proof

Step Hyp Ref Expression
1 spcgf.1 _ x A
2 spcgf.2 x ψ
3 spcgf.3 x = A φ ψ
4 2 1 spcgft x x = A φ ψ A V x φ ψ
5 4 3 mpg A V x φ ψ