Metamath Proof Explorer


Theorem spcgft

Description: A closed version of spcgf . (Contributed by Andrew Salmon, 6-Jun-2011) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgft.1 x ψ
spcimgft.2 _ x A
Assertion spcgft x x = A φ ψ A B x φ ψ

Proof

Step Hyp Ref Expression
1 spcimgft.1 x ψ
2 spcimgft.2 _ x A
3 biimp φ ψ φ ψ
4 3 imim2i x = A φ ψ x = A φ ψ
5 4 alimi x x = A φ ψ x x = A φ ψ
6 1 2 spcimgft x x = A φ ψ A B x φ ψ
7 5 6 syl x x = A φ ψ A B x φ ψ