Metamath Proof Explorer


Theorem spcgft

Description: A closed version of spcgf . (Contributed by Andrew Salmon, 6-Jun-2011) (Revised by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgft.1 xψ
spcimgft.2 _xA
Assertion spcgft xx=AφψABxφψ

Proof

Step Hyp Ref Expression
1 spcimgft.1 xψ
2 spcimgft.2 _xA
3 biimp φψφψ
4 3 imim2i x=Aφψx=Aφψ
5 4 alimi xx=Aφψxx=Aφψ
6 1 2 spcimgft xx=AφψABxφψ
7 5 6 syl xx=AφψABxφψ