Metamath Proof Explorer


Theorem spcimdv

Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023)

Ref Expression
Hypotheses spcimdv.1 φ A B
spcimdv.2 φ x = A ψ χ
Assertion spcimdv φ x ψ χ

Proof

Step Hyp Ref Expression
1 spcimdv.1 φ A B
2 spcimdv.2 φ x = A ψ χ
3 elisset A B x x = A
4 1 3 syl φ x x = A
5 2 ex φ x = A ψ χ
6 5 eximdv φ x x = A x ψ χ
7 4 6 mpd φ x ψ χ
8 19.36v x ψ χ x ψ χ
9 7 8 sylib φ x ψ χ