Metamath Proof Explorer


Theorem spcimedv

Description: Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimdv.1 φ A B
spcimedv.2 φ x = A χ ψ
Assertion spcimedv φ χ x ψ

Proof

Step Hyp Ref Expression
1 spcimdv.1 φ A B
2 spcimedv.2 φ x = A χ ψ
3 2 con3d φ x = A ¬ ψ ¬ χ
4 1 3 spcimdv φ x ¬ ψ ¬ χ
5 4 con2d φ χ ¬ x ¬ ψ
6 df-ex x ψ ¬ x ¬ ψ
7 5 6 syl6ibr φ χ x ψ