Metamath Proof Explorer


Theorem spcimgf

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgf.1 _xA
spcimgf.2 xψ
spcimgf.3 x=Aφψ
Assertion spcimgf AVxφψ

Proof

Step Hyp Ref Expression
1 spcimgf.1 _xA
2 spcimgf.2 xψ
3 spcimgf.3 x=Aφψ
4 2 1 spcimgft xx=AφψAVxφψ
5 4 3 mpg AVxφψ