Metamath Proof Explorer
Description: Rule of specialization, using implicit substitution. Compare Theorem
7.3 of Quine p. 44. (Contributed by Mario Carneiro, 4-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
spcimgf.1 |
|
|
|
spcimgf.2 |
|
|
|
spcimgf.3 |
|
|
Assertion |
spcimgf |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
spcimgf.1 |
|
2 |
|
spcimgf.2 |
|
3 |
|
spcimgf.3 |
|
4 |
2 1
|
spcimgft |
|
5 |
4 3
|
mpg |
|