Metamath Proof Explorer


Theorem spcimgf

Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of Quine p. 44. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgf.1 _ x A
spcimgf.2 x ψ
spcimgf.3 x = A φ ψ
Assertion spcimgf A V x φ ψ

Proof

Step Hyp Ref Expression
1 spcimgf.1 _ x A
2 spcimgf.2 x ψ
3 spcimgf.3 x = A φ ψ
4 2 1 spcimgft x x = A φ ψ A V x φ ψ
5 4 3 mpg A V x φ ψ