Metamath Proof Explorer
		
		
		
		Description:  Rule of specialization, using implicit substitution.  Compare Theorem
         7.3 of Quine p. 44.  (Contributed by Mario Carneiro, 4-Jan-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | spcimgf.1 |  | 
					
						|  |  | spcimgf.2 |  | 
					
						|  |  | spcimgf.3 |  | 
				
					|  | Assertion | spcimgf |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spcimgf.1 |  | 
						
							| 2 |  | spcimgf.2 |  | 
						
							| 3 |  | spcimgf.3 |  | 
						
							| 4 | 2 1 | spcimgfi1 |  | 
						
							| 5 | 4 3 | mpg |  |