Metamath Proof Explorer


Theorem spcimgft

Description: A closed version of spcimgf . (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses spcimgft.1 x ψ
spcimgft.2 _ x A
Assertion spcimgft x x = A φ ψ A B x φ ψ

Proof

Step Hyp Ref Expression
1 spcimgft.1 x ψ
2 spcimgft.2 _ x A
3 elex A B A V
4 2 issetf A V x x = A
5 exim x x = A φ ψ x x = A x φ ψ
6 4 5 syl5bi x x = A φ ψ A V x φ ψ
7 1 19.36 x φ ψ x φ ψ
8 6 7 syl6ib x x = A φ ψ A V x φ ψ
9 3 8 syl5 x x = A φ ψ A B x φ ψ