Metamath Proof Explorer


Theorem speccl

Description: The spectrum of an operator is a set of complex numbers. (Contributed by NM, 11-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion speccl T : Lambda T

Proof

Step Hyp Ref Expression
1 specval T : Lambda T = x | ¬ T - op x · op I : 1-1
2 ssrab2 x | ¬ T - op x · op I : 1-1
3 1 2 eqsstrdi T : Lambda T