Metamath Proof Explorer


Theorem spfalw

Description: Version of sp when ph is false. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017) (Proof shortened by Wolf Lammen, 25-Dec-2017)

Ref Expression
Hypothesis spfalw.1 ¬ φ
Assertion spfalw x φ φ

Proof

Step Hyp Ref Expression
1 spfalw.1 ¬ φ
2 1 hbth ¬ φ x ¬ φ
3 2 spnfw x φ φ