Metamath Proof Explorer


Theorem spfw

Description: Weak version of sp . Uses only Tarski's FOL axiom schemes. Lemma 9 of KalishMontague p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 10-Oct-2021)

Ref Expression
Hypotheses spfw.1 ¬ ψ x ¬ ψ
spfw.2 x φ y x φ
spfw.3 ¬ φ y ¬ φ
spfw.4 x = y φ ψ
Assertion spfw x φ φ

Proof

Step Hyp Ref Expression
1 spfw.1 ¬ ψ x ¬ ψ
2 spfw.2 x φ y x φ
3 spfw.3 ¬ φ y ¬ φ
4 spfw.4 x = y φ ψ
5 4 biimpd x = y φ ψ
6 2 1 5 cbvaliw x φ y ψ
7 4 biimprd x = y ψ φ
8 7 equcoms y = x ψ φ
9 3 8 spimw y ψ φ
10 6 9 syl x φ φ