Metamath Proof Explorer


Theorem spimed

Description: Deduction version of spime . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker spimedv if possible. (Contributed by NM, 14-May-1993) (Revised by Mario Carneiro, 3-Oct-2016) (Proof shortened by Wolf Lammen, 19-Feb-2018) (New usage is discouraged.)

Ref Expression
Hypotheses spimed.1 χ x φ
spimed.2 x = y φ ψ
Assertion spimed χ φ x ψ

Proof

Step Hyp Ref Expression
1 spimed.1 χ x φ
2 spimed.2 x = y φ ψ
3 1 nf5rd χ φ x φ
4 ax6e x x = y
5 4 2 eximii x φ ψ
6 5 19.35i x φ x ψ
7 3 6 syl6 χ φ x ψ