Metamath Proof Explorer


Theorem spimefv

Description: Version of spime with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 31-May-2019)

Ref Expression
Hypotheses spimefv.1 x φ
spimefv.2 x = y φ ψ
Assertion spimefv φ x ψ

Proof

Step Hyp Ref Expression
1 spimefv.1 x φ
2 spimefv.2 x = y φ ψ
3 1 a1i x φ
4 3 2 spimedv φ x ψ
5 4 mptru φ x ψ