Metamath Proof Explorer


Theorem spimew

Description: Existential introduction, using implicit substitution. Compare Lemma 14 of Tarski p. 70. (Contributed by NM, 7-Aug-1994) (Proof shortened by Wolf Lammen, 22-Oct-2023)

Ref Expression
Hypotheses spimew.1 φ x φ
spimew.2 x = y φ ψ
Assertion spimew φ x ψ

Proof

Step Hyp Ref Expression
1 spimew.1 φ x φ
2 spimew.2 x = y φ ψ
3 ax6v ¬ x ¬ x = y
4 2 speimfw ¬ x ¬ x = y x φ x ψ
5 3 1 4 mpsyl φ x ψ