Metamath Proof Explorer


Theorem spimfw

Description: Specialization, with additional weakening (compared to sp ) to allow bundling of x and y . Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017) (Proof shortened by Wolf Lammen, 7-Aug-2017)

Ref Expression
Hypotheses spimfw.1 ¬ ψ x ¬ ψ
spimfw.2 x = y φ ψ
Assertion spimfw ¬ x ¬ x = y x φ ψ

Proof

Step Hyp Ref Expression
1 spimfw.1 ¬ ψ x ¬ ψ
2 spimfw.2 x = y φ ψ
3 2 speimfw ¬ x ¬ x = y x φ x ψ
4 df-ex x ψ ¬ x ¬ ψ
5 1 con1i ¬ x ¬ ψ ψ
6 4 5 sylbi x ψ ψ
7 3 6 syl6 ¬ x ¬ x = y x φ ψ