Metamath Proof Explorer


Theorem spimw

Description: Specialization. Lemma 8 of KalishMontague p. 87. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017) (Proof shortened by Wolf Lammen, 7-Aug-2017)

Ref Expression
Hypotheses spimw.1 ¬ ψ x ¬ ψ
spimw.2 x = y φ ψ
Assertion spimw x φ ψ

Proof

Step Hyp Ref Expression
1 spimw.1 ¬ ψ x ¬ ψ
2 spimw.2 x = y φ ψ
3 ax6v ¬ x ¬ x = y
4 1 2 spimfw ¬ x ¬ x = y x φ ψ
5 3 4 ax-mp x φ ψ