Metamath Proof Explorer


Theorem splfv1

Description: Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015) (Proof shortened by AV, 15-Oct-2022)

Ref Expression
Hypotheses spllen.s φ S Word A
spllen.f φ F 0 T
spllen.t φ T 0 S
spllen.r φ R Word A
splfv1.x φ X 0 ..^ F
Assertion splfv1 φ S splice F T R X = S X

Proof

Step Hyp Ref Expression
1 spllen.s φ S Word A
2 spllen.f φ F 0 T
3 spllen.t φ T 0 S
4 spllen.r φ R Word A
5 splfv1.x φ X 0 ..^ F
6 splval S Word A F 0 T T 0 S R Word A S splice F T R = S prefix F ++ R ++ S substr T S
7 1 2 3 4 6 syl13anc φ S splice F T R = S prefix F ++ R ++ S substr T S
8 7 fveq1d φ S splice F T R X = S prefix F ++ R ++ S substr T S X
9 pfxcl S Word A S prefix F Word A
10 1 9 syl φ S prefix F Word A
11 ccatcl S prefix F Word A R Word A S prefix F ++ R Word A
12 10 4 11 syl2anc φ S prefix F ++ R Word A
13 swrdcl S Word A S substr T S Word A
14 1 13 syl φ S substr T S Word A
15 2 elfzelzd φ F
16 15 uzidd φ F F
17 lencl R Word A R 0
18 4 17 syl φ R 0
19 uzaddcl F F R 0 F + R F
20 16 18 19 syl2anc φ F + R F
21 fzoss2 F + R F 0 ..^ F 0 ..^ F + R
22 20 21 syl φ 0 ..^ F 0 ..^ F + R
23 22 5 sseldd φ X 0 ..^ F + R
24 ccatlen S prefix F Word A R Word A S prefix F ++ R = S prefix F + R
25 10 4 24 syl2anc φ S prefix F ++ R = S prefix F + R
26 fzass4 F 0 S T F S F 0 T T 0 S
27 26 biimpri F 0 T T 0 S F 0 S T F S
28 27 simpld F 0 T T 0 S F 0 S
29 2 3 28 syl2anc φ F 0 S
30 pfxlen S Word A F 0 S S prefix F = F
31 1 29 30 syl2anc φ S prefix F = F
32 31 oveq1d φ S prefix F + R = F + R
33 25 32 eqtrd φ S prefix F ++ R = F + R
34 33 oveq2d φ 0 ..^ S prefix F ++ R = 0 ..^ F + R
35 23 34 eleqtrrd φ X 0 ..^ S prefix F ++ R
36 ccatval1 S prefix F ++ R Word A S substr T S Word A X 0 ..^ S prefix F ++ R S prefix F ++ R ++ S substr T S X = S prefix F ++ R X
37 12 14 35 36 syl3anc φ S prefix F ++ R ++ S substr T S X = S prefix F ++ R X
38 31 oveq2d φ 0 ..^ S prefix F = 0 ..^ F
39 5 38 eleqtrrd φ X 0 ..^ S prefix F
40 ccatval1 S prefix F Word A R Word A X 0 ..^ S prefix F S prefix F ++ R X = S prefix F X
41 10 4 39 40 syl3anc φ S prefix F ++ R X = S prefix F X
42 pfxfv S Word A F 0 S X 0 ..^ F S prefix F X = S X
43 1 29 5 42 syl3anc φ S prefix F X = S X
44 41 43 eqtrd φ S prefix F ++ R X = S X
45 8 37 44 3eqtrd φ S splice F T R X = S X