| Step |
Hyp |
Ref |
Expression |
| 1 |
|
splval2.a |
|
| 2 |
|
splval2.b |
|
| 3 |
|
splval2.c |
|
| 4 |
|
splval2.r |
|
| 5 |
|
splval2.s |
|
| 6 |
|
splval2.f |
|
| 7 |
|
splval2.t |
|
| 8 |
|
ccatcl |
|
| 9 |
1 2 8
|
syl2anc |
|
| 10 |
|
ccatcl |
|
| 11 |
9 3 10
|
syl2anc |
|
| 12 |
5 11
|
eqeltrd |
|
| 13 |
|
lencl |
|
| 14 |
1 13
|
syl |
|
| 15 |
6 14
|
eqeltrd |
|
| 16 |
|
lencl |
|
| 17 |
2 16
|
syl |
|
| 18 |
15 17
|
nn0addcld |
|
| 19 |
7 18
|
eqeltrd |
|
| 20 |
|
splval |
|
| 21 |
12 15 19 4 20
|
syl13anc |
|
| 22 |
|
nn0uz |
|
| 23 |
15 22
|
eleqtrdi |
|
| 24 |
15
|
nn0zd |
|
| 25 |
24
|
uzidd |
|
| 26 |
|
uzaddcl |
|
| 27 |
25 17 26
|
syl2anc |
|
| 28 |
7 27
|
eqeltrd |
|
| 29 |
|
elfzuzb |
|
| 30 |
23 28 29
|
sylanbrc |
|
| 31 |
19 22
|
eleqtrdi |
|
| 32 |
|
ccatlen |
|
| 33 |
9 3 32
|
syl2anc |
|
| 34 |
5
|
fveq2d |
|
| 35 |
6
|
oveq1d |
|
| 36 |
|
ccatlen |
|
| 37 |
1 2 36
|
syl2anc |
|
| 38 |
35 7 37
|
3eqtr4d |
|
| 39 |
38
|
oveq1d |
|
| 40 |
33 34 39
|
3eqtr4d |
|
| 41 |
19
|
nn0zd |
|
| 42 |
41
|
uzidd |
|
| 43 |
|
lencl |
|
| 44 |
3 43
|
syl |
|
| 45 |
|
uzaddcl |
|
| 46 |
42 44 45
|
syl2anc |
|
| 47 |
40 46
|
eqeltrd |
|
| 48 |
|
elfzuzb |
|
| 49 |
31 47 48
|
sylanbrc |
|
| 50 |
|
ccatpfx |
|
| 51 |
12 30 49 50
|
syl3anc |
|
| 52 |
|
lencl |
|
| 53 |
12 52
|
syl |
|
| 54 |
53 22
|
eleqtrdi |
|
| 55 |
|
eluzfz2 |
|
| 56 |
54 55
|
syl |
|
| 57 |
|
ccatpfx |
|
| 58 |
12 49 56 57
|
syl3anc |
|
| 59 |
|
pfxid |
|
| 60 |
12 59
|
syl |
|
| 61 |
58 60 5
|
3eqtrd |
|
| 62 |
|
pfxcl |
|
| 63 |
12 62
|
syl |
|
| 64 |
|
swrdcl |
|
| 65 |
12 64
|
syl |
|
| 66 |
|
pfxlen |
|
| 67 |
12 49 66
|
syl2anc |
|
| 68 |
67 38
|
eqtrd |
|
| 69 |
|
ccatopth |
|
| 70 |
63 65 9 3 68 69
|
syl221anc |
|
| 71 |
61 70
|
mpbid |
|
| 72 |
71
|
simpld |
|
| 73 |
51 72
|
eqtrd |
|
| 74 |
|
pfxcl |
|
| 75 |
12 74
|
syl |
|
| 76 |
|
swrdcl |
|
| 77 |
12 76
|
syl |
|
| 78 |
|
uztrn |
|
| 79 |
47 28 78
|
syl2anc |
|
| 80 |
|
elfzuzb |
|
| 81 |
23 79 80
|
sylanbrc |
|
| 82 |
|
pfxlen |
|
| 83 |
12 81 82
|
syl2anc |
|
| 84 |
83 6
|
eqtrd |
|
| 85 |
|
ccatopth |
|
| 86 |
75 77 1 2 84 85
|
syl221anc |
|
| 87 |
73 86
|
mpbid |
|
| 88 |
87
|
simpld |
|
| 89 |
88
|
oveq1d |
|
| 90 |
71
|
simprd |
|
| 91 |
89 90
|
oveq12d |
|
| 92 |
21 91
|
eqtrd |
|