Metamath Proof Explorer


Theorem sprmpod

Description: The extension of a binary relation which is the value of an operation given in maps-to notation. (Contributed by Alexander van der Vekens, 30-Oct-2017) (Revised by AV, 20-Jun-2019)

Ref Expression
Hypotheses sprmpod.1 M = v V , e V x y | x v R e y χ
sprmpod.2 φ v = V e = E χ ψ
sprmpod.3 φ V V E V
sprmpod.4 φ x y x V R E y θ
sprmpod.5 φ x y | θ V
Assertion sprmpod φ V M E = x y | x V R E y ψ

Proof

Step Hyp Ref Expression
1 sprmpod.1 M = v V , e V x y | x v R e y χ
2 sprmpod.2 φ v = V e = E χ ψ
3 sprmpod.3 φ V V E V
4 sprmpod.4 φ x y x V R E y θ
5 sprmpod.5 φ x y | θ V
6 1 a1i φ M = v V , e V x y | x v R e y χ
7 oveq12 v = V e = E v R e = V R E
8 7 breqd v = V e = E x v R e y x V R E y
9 8 adantl φ v = V e = E x v R e y x V R E y
10 2 3expb φ v = V e = E χ ψ
11 9 10 anbi12d φ v = V e = E x v R e y χ x V R E y ψ
12 11 opabbidv φ v = V e = E x y | x v R e y χ = x y | x V R E y ψ
13 3 simpld φ V V
14 3 simprd φ E V
15 opabbrex x y x V R E y θ x y | θ V x y | x V R E y ψ V
16 4 5 15 syl2anc φ x y | x V R E y ψ V
17 6 12 13 14 16 ovmpod φ V M E = x y | x V R E y ψ