Metamath Proof Explorer


Theorem spsbbi

Description: Biconditional property for substitution. Closed form of sbbii . Specialization of biconditional. (Contributed by NM, 2-Jun-1993) Revise df-sb . (Revised by BJ, 22-Dec-2020)

Ref Expression
Assertion spsbbi x φ ψ t x φ t x ψ

Proof

Step Hyp Ref Expression
1 biimp φ ψ φ ψ
2 1 alimi x φ ψ x φ ψ
3 spsbim x φ ψ t x φ t x ψ
4 2 3 syl x φ ψ t x φ t x ψ
5 biimpr φ ψ ψ φ
6 5 alimi x φ ψ x ψ φ
7 spsbim x ψ φ t x ψ t x φ
8 6 7 syl x φ ψ t x ψ t x φ
9 4 8 impbid x φ ψ t x φ t x ψ