Metamath Proof Explorer


Theorem spthdep

Description: A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion spthdep F SPaths G P F 0 P 0 P F

Proof

Step Hyp Ref Expression
1 isspth F SPaths G P F Trails G P Fun P -1
2 trliswlk F Trails G P F Walks G P
3 eqid Vtx G = Vtx G
4 3 wlkp F Walks G P P : 0 F Vtx G
5 2 4 syl F Trails G P P : 0 F Vtx G
6 5 anim1i F Trails G P Fun P -1 P : 0 F Vtx G Fun P -1
7 df-f1 P : 0 F 1-1 Vtx G P : 0 F Vtx G Fun P -1
8 6 7 sylibr F Trails G P Fun P -1 P : 0 F 1-1 Vtx G
9 wlkcl F Walks G P F 0
10 nn0fz0 F 0 F 0 F
11 10 biimpi F 0 F 0 F
12 0elfz F 0 0 0 F
13 11 12 jca F 0 F 0 F 0 0 F
14 2 9 13 3syl F Trails G P F 0 F 0 0 F
15 14 adantr F Trails G P Fun P -1 F 0 F 0 0 F
16 8 15 jca F Trails G P Fun P -1 P : 0 F 1-1 Vtx G F 0 F 0 0 F
17 eqcom P 0 = P F P F = P 0
18 f1veqaeq P : 0 F 1-1 Vtx G F 0 F 0 0 F P F = P 0 F = 0
19 17 18 syl5bi P : 0 F 1-1 Vtx G F 0 F 0 0 F P 0 = P F F = 0
20 16 19 syl F Trails G P Fun P -1 P 0 = P F F = 0
21 20 necon3d F Trails G P Fun P -1 F 0 P 0 P F
22 1 21 sylbi F SPaths G P F 0 P 0 P F
23 22 imp F SPaths G P F 0 P 0 P F