Metamath Proof Explorer


Theorem spthdifv

Description: The vertices of a simple path are distinct, so the vertex function is one-to-one. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Revised by AV, 5-Jun-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Assertion spthdifv F SPaths G P P : 0 F 1-1 Vtx G

Proof

Step Hyp Ref Expression
1 isspth F SPaths G P F Trails G P Fun P -1
2 trliswlk F Trails G P F Walks G P
3 eqid Vtx G = Vtx G
4 3 wlkp F Walks G P P : 0 F Vtx G
5 df-f1 P : 0 F 1-1 Vtx G P : 0 F Vtx G Fun P -1
6 5 simplbi2 P : 0 F Vtx G Fun P -1 P : 0 F 1-1 Vtx G
7 2 4 6 3syl F Trails G P Fun P -1 P : 0 F 1-1 Vtx G
8 7 imp F Trails G P Fun P -1 P : 0 F 1-1 Vtx G
9 1 8 sylbi F SPaths G P P : 0 F 1-1 Vtx G