Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
1
|
spthonprop |
|
3 |
1
|
istrlson |
|
4 |
3
|
3adantl1 |
|
5 |
|
isspth |
|
6 |
5
|
a1i |
|
7 |
4 6
|
anbi12d |
|
8 |
1
|
wlkonprop |
|
9 |
|
wlkcl |
|
10 |
1
|
wlkp |
|
11 |
|
df-f1 |
|
12 |
|
eqeq2 |
|
13 |
|
eqtr3 |
|
14 |
|
elnn0uz |
|
15 |
|
eluzfz2 |
|
16 |
14 15
|
sylbi |
|
17 |
|
0elfz |
|
18 |
16 17
|
jca |
|
19 |
|
f1veqaeq |
|
20 |
18 19
|
sylan2 |
|
21 |
20
|
ex |
|
22 |
21
|
com13 |
|
23 |
13 22
|
syl |
|
24 |
23
|
expcom |
|
25 |
12 24
|
syl6bi |
|
26 |
25
|
com15 |
|
27 |
11 26
|
sylbir |
|
28 |
27
|
expcom |
|
29 |
28
|
com15 |
|
30 |
9 10 29
|
sylc |
|
31 |
30
|
3imp1 |
|
32 |
|
fveqeq2 |
|
33 |
32
|
anbi2d |
|
34 |
|
eqtr2 |
|
35 |
33 34
|
syl6bi |
|
36 |
35
|
com12 |
|
37 |
36
|
3adant1 |
|
38 |
37
|
adantr |
|
39 |
31 38
|
impbid |
|
40 |
39
|
ex |
|
41 |
40
|
3ad2ant3 |
|
42 |
8 41
|
syl |
|
43 |
42
|
adantld |
|
44 |
43
|
adantr |
|
45 |
44
|
imp |
|
46 |
7 45
|
syl6bi |
|
47 |
46
|
3impia |
|
48 |
2 47
|
syl |
|