| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
spthonprop |
|
| 3 |
1
|
istrlson |
|
| 4 |
3
|
3adantl1 |
|
| 5 |
|
isspth |
|
| 6 |
5
|
a1i |
|
| 7 |
4 6
|
anbi12d |
|
| 8 |
1
|
wlkonprop |
|
| 9 |
|
wlkcl |
|
| 10 |
1
|
wlkp |
|
| 11 |
|
df-f1 |
|
| 12 |
|
eqeq2 |
|
| 13 |
|
eqtr3 |
|
| 14 |
|
elnn0uz |
|
| 15 |
|
eluzfz2 |
|
| 16 |
14 15
|
sylbi |
|
| 17 |
|
0elfz |
|
| 18 |
16 17
|
jca |
|
| 19 |
|
f1veqaeq |
|
| 20 |
18 19
|
sylan2 |
|
| 21 |
20
|
ex |
|
| 22 |
21
|
com13 |
|
| 23 |
13 22
|
syl |
|
| 24 |
23
|
expcom |
|
| 25 |
12 24
|
biimtrdi |
|
| 26 |
25
|
com15 |
|
| 27 |
11 26
|
sylbir |
|
| 28 |
27
|
expcom |
|
| 29 |
28
|
com15 |
|
| 30 |
9 10 29
|
sylc |
|
| 31 |
30
|
3imp1 |
|
| 32 |
|
fveqeq2 |
|
| 33 |
32
|
anbi2d |
|
| 34 |
|
eqtr2 |
|
| 35 |
33 34
|
biimtrdi |
|
| 36 |
35
|
com12 |
|
| 37 |
36
|
3adant1 |
|
| 38 |
37
|
adantr |
|
| 39 |
31 38
|
impbid |
|
| 40 |
39
|
ex |
|
| 41 |
40
|
3ad2ant3 |
|
| 42 |
8 41
|
syl |
|
| 43 |
42
|
adantld |
|
| 44 |
43
|
adantr |
|
| 45 |
44
|
imp |
|
| 46 |
7 45
|
biimtrdi |
|
| 47 |
46
|
3impia |
|
| 48 |
2 47
|
syl |
|