Metamath Proof Explorer


Theorem spthonepeq

Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 18-Jan-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Assertion spthonepeq F A SPathsOn G B P A = B F = 0

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 spthonprop F A SPathsOn G B P G V A Vtx G B Vtx G F V P V F A TrailsOn G B P F SPaths G P
3 1 istrlson A Vtx G B Vtx G F V P V F A TrailsOn G B P F A WalksOn G B P F Trails G P
4 3 3adantl1 G V A Vtx G B Vtx G F V P V F A TrailsOn G B P F A WalksOn G B P F Trails G P
5 isspth F SPaths G P F Trails G P Fun P -1
6 5 a1i G V A Vtx G B Vtx G F V P V F SPaths G P F Trails G P Fun P -1
7 4 6 anbi12d G V A Vtx G B Vtx G F V P V F A TrailsOn G B P F SPaths G P F A WalksOn G B P F Trails G P F Trails G P Fun P -1
8 1 wlkonprop F A WalksOn G B P G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B
9 wlkcl F Walks G P F 0
10 1 wlkp F Walks G P P : 0 F Vtx G
11 df-f1 P : 0 F 1-1 Vtx G P : 0 F Vtx G Fun P -1
12 eqeq2 A = B P 0 = A P 0 = B
13 eqtr3 P F = B P 0 = B P F = P 0
14 elnn0uz F 0 F 0
15 eluzfz2 F 0 F 0 F
16 14 15 sylbi F 0 F 0 F
17 0elfz F 0 0 0 F
18 16 17 jca F 0 F 0 F 0 0 F
19 f1veqaeq P : 0 F 1-1 Vtx G F 0 F 0 0 F P F = P 0 F = 0
20 18 19 sylan2 P : 0 F 1-1 Vtx G F 0 P F = P 0 F = 0
21 20 ex P : 0 F 1-1 Vtx G F 0 P F = P 0 F = 0
22 21 com13 P F = P 0 F 0 P : 0 F 1-1 Vtx G F = 0
23 13 22 syl P F = B P 0 = B F 0 P : 0 F 1-1 Vtx G F = 0
24 23 expcom P 0 = B P F = B F 0 P : 0 F 1-1 Vtx G F = 0
25 12 24 syl6bi A = B P 0 = A P F = B F 0 P : 0 F 1-1 Vtx G F = 0
26 25 com15 P : 0 F 1-1 Vtx G P 0 = A P F = B F 0 A = B F = 0
27 11 26 sylbir P : 0 F Vtx G Fun P -1 P 0 = A P F = B F 0 A = B F = 0
28 27 expcom Fun P -1 P : 0 F Vtx G P 0 = A P F = B F 0 A = B F = 0
29 28 com15 F 0 P : 0 F Vtx G P 0 = A P F = B Fun P -1 A = B F = 0
30 9 10 29 sylc F Walks G P P 0 = A P F = B Fun P -1 A = B F = 0
31 30 3imp1 F Walks G P P 0 = A P F = B Fun P -1 A = B F = 0
32 fveqeq2 F = 0 P F = B P 0 = B
33 32 anbi2d F = 0 P 0 = A P F = B P 0 = A P 0 = B
34 eqtr2 P 0 = A P 0 = B A = B
35 33 34 syl6bi F = 0 P 0 = A P F = B A = B
36 35 com12 P 0 = A P F = B F = 0 A = B
37 36 3adant1 F Walks G P P 0 = A P F = B F = 0 A = B
38 37 adantr F Walks G P P 0 = A P F = B Fun P -1 F = 0 A = B
39 31 38 impbid F Walks G P P 0 = A P F = B Fun P -1 A = B F = 0
40 39 ex F Walks G P P 0 = A P F = B Fun P -1 A = B F = 0
41 40 3ad2ant3 G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B Fun P -1 A = B F = 0
42 8 41 syl F A WalksOn G B P Fun P -1 A = B F = 0
43 42 adantld F A WalksOn G B P F Trails G P Fun P -1 A = B F = 0
44 43 adantr F A WalksOn G B P F Trails G P F Trails G P Fun P -1 A = B F = 0
45 44 imp F A WalksOn G B P F Trails G P F Trails G P Fun P -1 A = B F = 0
46 7 45 syl6bi G V A Vtx G B Vtx G F V P V F A TrailsOn G B P F SPaths G P A = B F = 0
47 46 3impia G V A Vtx G B Vtx G F V P V F A TrailsOn G B P F SPaths G P A = B F = 0
48 2 47 syl F A SPathsOn G B P A = B F = 0