Metamath Proof Explorer


Theorem spthonisspth

Description: A simple path between to vertices is a simple path. (Contributed by Alexander van der Vekens, 2-Mar-2018) (Revised by AV, 18-Jan-2021)

Ref Expression
Assertion spthonisspth F A SPathsOn G B P F SPaths G P

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 spthonprop F A SPathsOn G B P G V A Vtx G B Vtx G F V P V F A TrailsOn G B P F SPaths G P
3 simp3r G V A Vtx G B Vtx G F V P V F A TrailsOn G B P F SPaths G P F SPaths G P
4 2 3 syl F A SPathsOn G B P F SPaths G P