Metamath Proof Explorer


Theorem spthonprop

Description: Properties of a simple path between two vertices. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 16-Jan-2021)

Ref Expression
Hypothesis pthsonfval.v V = Vtx G
Assertion spthonprop F A SPathsOn G B P G V A V B V F V P V F A TrailsOn G B P F SPaths G P

Proof

Step Hyp Ref Expression
1 pthsonfval.v V = Vtx G
2 1 isspthson A V B V F V P V F A SPathsOn G B P F A TrailsOn G B P F SPaths G P
3 2 3adantl1 G V A V B V F V P V F A SPathsOn G B P F A TrailsOn G B P F SPaths G P
4 df-spthson SPathsOn = g V a Vtx g , b Vtx g f p | f a TrailsOn g b p f SPaths g p
5 spthiswlk f SPaths G p f Walks G p
6 5 adantl G V A V B V f SPaths G p f Walks G p
7 1 3 4 6 wksonproplem F A SPathsOn G B P G V A V B V F V P V F A TrailsOn G B P F SPaths G P