Metamath Proof Explorer


Theorem sq11d

Description: The square function is one-to-one for nonnegative reals. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1 φ A
lt2sqd.2 φ B
lt2sqd.3 φ 0 A
lt2sqd.4 φ 0 B
sq11d.5 φ A 2 = B 2
Assertion sq11d φ A = B

Proof

Step Hyp Ref Expression
1 resqcld.1 φ A
2 lt2sqd.2 φ B
3 lt2sqd.3 φ 0 A
4 lt2sqd.4 φ 0 B
5 sq11d.5 φ A 2 = B 2
6 sq11 A 0 A B 0 B A 2 = B 2 A = B
7 1 3 2 4 6 syl22anc φ A 2 = B 2 A = B
8 5 7 mpbid φ A = B