Metamath Proof Explorer


Theorem sqabs

Description: The squares of two reals are equal iff their absolute values are equal. (Contributed by NM, 6-Mar-2009)

Ref Expression
Assertion sqabs ABA2=B2A=B

Proof

Step Hyp Ref Expression
1 resqcl AA2
2 sqge0 A0A2
3 absid A20A2A2=A2
4 1 2 3 syl2anc AA2=A2
5 recn AA
6 2nn0 20
7 absexp A20A2=A2
8 5 6 7 sylancl AA2=A2
9 4 8 eqtr3d AA2=A2
10 resqcl BB2
11 sqge0 B0B2
12 absid B20B2B2=B2
13 10 11 12 syl2anc BB2=B2
14 recn BB
15 absexp B20B2=B2
16 14 6 15 sylancl BB2=B2
17 13 16 eqtr3d BB2=B2
18 9 17 eqeqan12d ABA2=B2A2=B2
19 abscl AA
20 absge0 A0A
21 19 20 jca AA0A
22 abscl BB
23 absge0 B0B
24 22 23 jca BB0B
25 sq11 A0AB0BA2=B2A=B
26 21 24 25 syl2an ABA2=B2A=B
27 5 14 26 syl2an ABA2=B2A=B
28 18 27 bitrd ABA2=B2A=B