Metamath Proof Explorer


Theorem sqabsaddi

Description: Square of absolute value of sum. Proposition 10-3.7(g) of Gleason p. 133. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypotheses absvalsqi.1 A
abssub.2 B
Assertion sqabsaddi A + B 2 = A 2 + B 2 + 2 A B

Proof

Step Hyp Ref Expression
1 absvalsqi.1 A
2 abssub.2 B
3 sqabsadd A B A + B 2 = A 2 + B 2 + 2 A B
4 1 2 3 mp2an A + B 2 = A 2 + B 2 + 2 A B