Metamath Proof Explorer


Theorem sqabssubi

Description: Square of absolute value of difference. (Contributed by Steve Rodriguez, 20-Jan-2007)

Ref Expression
Hypotheses absvalsqi.1 A
abssub.2 B
Assertion sqabssubi A B 2 = A 2 + B 2 - 2 A B

Proof

Step Hyp Ref Expression
1 absvalsqi.1 A
2 abssub.2 B
3 sqabssub A B A B 2 = A 2 + B 2 - 2 A B
4 1 2 3 mp2an A B 2 = A 2 + B 2 - 2 A B