Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqcl
Next ⟩
sqmul
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqcl
Description:
Closure of square.
(Contributed by
NM
, 10-Aug-1999)
Ref
Expression
Assertion
sqcl
⊢
A
∈
ℂ
→
A
2
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
sqval
⊢
A
∈
ℂ
→
A
2
=
A
⁢
A
2
mulcl
⊢
A
∈
ℂ
∧
A
∈
ℂ
→
A
⁢
A
∈
ℂ
3
2
anidms
⊢
A
∈
ℂ
→
A
⁢
A
∈
ℂ
4
1
3
eqeltrd
⊢
A
∈
ℂ
→
A
2
∈
ℂ