Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqcld
Next ⟩
sqeq0d
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqcld
Description:
Closure of square.
(Contributed by
Mario Carneiro
, 28-May-2016)
Ref
Expression
Hypothesis
expcld.1
⊢
φ
→
A
∈
ℂ
Assertion
sqcld
⊢
φ
→
A
2
∈
ℂ
Proof
Step
Hyp
Ref
Expression
1
expcld.1
⊢
φ
→
A
∈
ℂ
2
sqcl
⊢
A
∈
ℂ
→
A
2
∈
ℂ
3
1
2
syl
⊢
φ
→
A
2
∈
ℂ