Metamath Proof Explorer


Theorem sqdiv

Description: Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013) (Proof shortened by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqdiv A B B 0 A B 2 = A 2 B 2

Proof

Step Hyp Ref Expression
1 simp1 A B B 0 A
2 3simpc A B B 0 B B 0
3 divmuldiv A A B B 0 B B 0 A B A B = A A B B
4 1 1 2 2 3 syl22anc A B B 0 A B A B = A A B B
5 divcl A B B 0 A B
6 sqval A B A B 2 = A B A B
7 5 6 syl A B B 0 A B 2 = A B A B
8 sqval A A 2 = A A
9 sqval B B 2 = B B
10 8 9 oveqan12d A B A 2 B 2 = A A B B
11 10 3adant3 A B B 0 A 2 B 2 = A A B B
12 4 7 11 3eqtr4d A B B 0 A B 2 = A 2 B 2