Metamath Proof Explorer


Theorem sqdivd

Description: Distribution of square over division. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
mulexpd.2 φ B
sqdivd.3 φ B 0
Assertion sqdivd φ A B 2 = A 2 B 2

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 mulexpd.2 φ B
3 sqdivd.3 φ B 0
4 sqdiv A B B 0 A B 2 = A 2 B 2
5 1 2 3 4 syl3anc φ A B 2 = A 2 B 2