Metamath Proof Explorer


Theorem sqdivi

Description: Distribution of square over division. (Contributed by NM, 20-Aug-2001)

Ref Expression
Hypotheses sqval.1 A
sqmul.2 B
sqdiv.3 B 0
Assertion sqdivi A B 2 = A 2 B 2

Proof

Step Hyp Ref Expression
1 sqval.1 A
2 sqmul.2 B
3 sqdiv.3 B 0
4 1 2 1 2 3 3 divmuldivi A B A B = A A B B
5 1 2 3 divcli A B
6 5 sqvali A B 2 = A B A B
7 1 sqvali A 2 = A A
8 2 sqvali B 2 = B B
9 7 8 oveq12i A 2 B 2 = A A B B
10 4 6 9 3eqtr4i A B 2 = A 2 B 2