Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqdivi
Next ⟩
resqcli
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqdivi
Description:
Distribution of square over division.
(Contributed by
NM
, 20-Aug-2001)
Ref
Expression
Hypotheses
sqval.1
⊢
A
∈
ℂ
sqmul.2
⊢
B
∈
ℂ
sqdiv.3
⊢
B
≠
0
Assertion
sqdivi
⊢
A
B
2
=
A
2
B
2
Proof
Step
Hyp
Ref
Expression
1
sqval.1
⊢
A
∈
ℂ
2
sqmul.2
⊢
B
∈
ℂ
3
sqdiv.3
⊢
B
≠
0
4
1
2
1
2
3
3
divmuldivi
⊢
A
B
⁢
A
B
=
A
⁢
A
B
⁢
B
5
1
2
3
divcli
⊢
A
B
∈
ℂ
6
5
sqvali
⊢
A
B
2
=
A
B
⁢
A
B
7
1
sqvali
⊢
A
2
=
A
⁢
A
8
2
sqvali
⊢
B
2
=
B
⁢
B
9
7
8
oveq12i
⊢
A
2
B
2
=
A
⁢
A
B
⁢
B
10
4
6
9
3eqtr4i
⊢
A
B
2
=
A
2
B
2