Metamath Proof Explorer


Theorem sqeq0d

Description: A number is zero iff its square is zero. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
sqeq0d.1 φ A 2 = 0
Assertion sqeq0d φ A = 0

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 sqeq0d.1 φ A 2 = 0
3 2nn 2
4 3 a1i φ 2
5 1 4 2 expeq0d φ A = 0