Metamath Proof Explorer


Theorem sqf11

Description: A squarefree number is completely determined by the set of its prime divisors. (Contributed by Mario Carneiro, 1-Jul-2015)

Ref Expression
Assertion sqf11 A μ A 0 B μ B 0 A = B p p A p B

Proof

Step Hyp Ref Expression
1 nnnn0 A A 0
2 nnnn0 B B 0
3 pc11 A 0 B 0 A = B p p pCnt A = p pCnt B
4 1 2 3 syl2an A B A = B p p pCnt A = p pCnt B
5 4 ad2ant2r A μ A 0 B μ B 0 A = B p p pCnt A = p pCnt B
6 eleq1 p pCnt A = p pCnt B p pCnt A p pCnt B
7 dfbi3 p pCnt A p pCnt B p pCnt A p pCnt B ¬ p pCnt A ¬ p pCnt B
8 sqfpc A μ A 0 p p pCnt A 1
9 8 ad4ant124 A μ A 0 B μ B 0 p p pCnt A 1
10 nnle1eq1 p pCnt A p pCnt A 1 p pCnt A = 1
11 9 10 syl5ibcom A μ A 0 B μ B 0 p p pCnt A p pCnt A = 1
12 simprl A μ A 0 B μ B 0 B
13 12 adantr A μ A 0 B μ B 0 p B
14 simplrr A μ A 0 B μ B 0 p μ B 0
15 simpr A μ A 0 B μ B 0 p p
16 sqfpc B μ B 0 p p pCnt B 1
17 13 14 15 16 syl3anc A μ A 0 B μ B 0 p p pCnt B 1
18 nnle1eq1 p pCnt B p pCnt B 1 p pCnt B = 1
19 17 18 syl5ibcom A μ A 0 B μ B 0 p p pCnt B p pCnt B = 1
20 11 19 anim12d A μ A 0 B μ B 0 p p pCnt A p pCnt B p pCnt A = 1 p pCnt B = 1
21 eqtr3 p pCnt A = 1 p pCnt B = 1 p pCnt A = p pCnt B
22 20 21 syl6 A μ A 0 B μ B 0 p p pCnt A p pCnt B p pCnt A = p pCnt B
23 id p p
24 simpll A μ A 0 B μ B 0 A
25 pccl p A p pCnt A 0
26 23 24 25 syl2anr A μ A 0 B μ B 0 p p pCnt A 0
27 elnn0 p pCnt A 0 p pCnt A p pCnt A = 0
28 26 27 sylib A μ A 0 B μ B 0 p p pCnt A p pCnt A = 0
29 28 ord A μ A 0 B μ B 0 p ¬ p pCnt A p pCnt A = 0
30 pccl p B p pCnt B 0
31 23 12 30 syl2anr A μ A 0 B μ B 0 p p pCnt B 0
32 elnn0 p pCnt B 0 p pCnt B p pCnt B = 0
33 31 32 sylib A μ A 0 B μ B 0 p p pCnt B p pCnt B = 0
34 33 ord A μ A 0 B μ B 0 p ¬ p pCnt B p pCnt B = 0
35 29 34 anim12d A μ A 0 B μ B 0 p ¬ p pCnt A ¬ p pCnt B p pCnt A = 0 p pCnt B = 0
36 eqtr3 p pCnt A = 0 p pCnt B = 0 p pCnt A = p pCnt B
37 35 36 syl6 A μ A 0 B μ B 0 p ¬ p pCnt A ¬ p pCnt B p pCnt A = p pCnt B
38 22 37 jaod A μ A 0 B μ B 0 p p pCnt A p pCnt B ¬ p pCnt A ¬ p pCnt B p pCnt A = p pCnt B
39 7 38 syl5bi A μ A 0 B μ B 0 p p pCnt A p pCnt B p pCnt A = p pCnt B
40 6 39 impbid2 A μ A 0 B μ B 0 p p pCnt A = p pCnt B p pCnt A p pCnt B
41 pcelnn p A p pCnt A p A
42 23 24 41 syl2anr A μ A 0 B μ B 0 p p pCnt A p A
43 pcelnn p B p pCnt B p B
44 23 12 43 syl2anr A μ A 0 B μ B 0 p p pCnt B p B
45 42 44 bibi12d A μ A 0 B μ B 0 p p pCnt A p pCnt B p A p B
46 40 45 bitrd A μ A 0 B μ B 0 p p pCnt A = p pCnt B p A p B
47 46 ralbidva A μ A 0 B μ B 0 p p pCnt A = p pCnt B p p A p B
48 5 47 bitrd A μ A 0 B μ B 0 A = B p p A p B