Step |
Hyp |
Ref |
Expression |
1 |
|
nnnn0 |
|
2 |
|
nnnn0 |
|
3 |
|
pc11 |
|
4 |
1 2 3
|
syl2an |
|
5 |
4
|
ad2ant2r |
|
6 |
|
eleq1 |
|
7 |
|
dfbi3 |
|
8 |
|
sqfpc |
|
9 |
8
|
ad4ant124 |
|
10 |
|
nnle1eq1 |
|
11 |
9 10
|
syl5ibcom |
|
12 |
|
simprl |
|
13 |
12
|
adantr |
|
14 |
|
simplrr |
|
15 |
|
simpr |
|
16 |
|
sqfpc |
|
17 |
13 14 15 16
|
syl3anc |
|
18 |
|
nnle1eq1 |
|
19 |
17 18
|
syl5ibcom |
|
20 |
11 19
|
anim12d |
|
21 |
|
eqtr3 |
|
22 |
20 21
|
syl6 |
|
23 |
|
id |
|
24 |
|
simpll |
|
25 |
|
pccl |
|
26 |
23 24 25
|
syl2anr |
|
27 |
|
elnn0 |
|
28 |
26 27
|
sylib |
|
29 |
28
|
ord |
|
30 |
|
pccl |
|
31 |
23 12 30
|
syl2anr |
|
32 |
|
elnn0 |
|
33 |
31 32
|
sylib |
|
34 |
33
|
ord |
|
35 |
29 34
|
anim12d |
|
36 |
|
eqtr3 |
|
37 |
35 36
|
syl6 |
|
38 |
22 37
|
jaod |
|
39 |
7 38
|
syl5bi |
|
40 |
6 39
|
impbid2 |
|
41 |
|
pcelnn |
|
42 |
23 24 41
|
syl2anr |
|
43 |
|
pcelnn |
|
44 |
23 12 43
|
syl2anr |
|
45 |
42 44
|
bibi12d |
|
46 |
40 45
|
bitrd |
|
47 |
46
|
ralbidva |
|
48 |
5 47
|
bitrd |
|