Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
|
2 |
1
|
nnsqcld |
|
3 |
2
|
nncnd |
|
4 |
3
|
mulid1d |
|
5 |
|
nnsqcl |
|
6 |
5
|
nnzd |
|
7 |
6
|
adantr |
|
8 |
|
nnsqcl |
|
9 |
8
|
nnzd |
|
10 |
9
|
adantl |
|
11 |
|
nnz |
|
12 |
|
nnz |
|
13 |
|
gcddvds |
|
14 |
11 12 13
|
syl2an |
|
15 |
14
|
simpld |
|
16 |
1
|
nnzd |
|
17 |
11
|
adantr |
|
18 |
|
dvdssqim |
|
19 |
16 17 18
|
syl2anc |
|
20 |
15 19
|
mpd |
|
21 |
14
|
simprd |
|
22 |
12
|
adantl |
|
23 |
|
dvdssqim |
|
24 |
16 22 23
|
syl2anc |
|
25 |
21 24
|
mpd |
|
26 |
|
gcddiv |
|
27 |
7 10 2 20 25 26
|
syl32anc |
|
28 |
|
nncn |
|
29 |
28
|
adantr |
|
30 |
1
|
nncnd |
|
31 |
1
|
nnne0d |
|
32 |
29 30 31
|
sqdivd |
|
33 |
|
nncn |
|
34 |
33
|
adantl |
|
35 |
34 30 31
|
sqdivd |
|
36 |
32 35
|
oveq12d |
|
37 |
|
gcddiv |
|
38 |
17 22 1 14 37
|
syl31anc |
|
39 |
30 31
|
dividd |
|
40 |
38 39
|
eqtr3d |
|
41 |
|
dvdsval2 |
|
42 |
16 31 17 41
|
syl3anc |
|
43 |
15 42
|
mpbid |
|
44 |
|
nnre |
|
45 |
44
|
adantr |
|
46 |
1
|
nnred |
|
47 |
|
nngt0 |
|
48 |
47
|
adantr |
|
49 |
1
|
nngt0d |
|
50 |
45 46 48 49
|
divgt0d |
|
51 |
|
elnnz |
|
52 |
43 50 51
|
sylanbrc |
|
53 |
|
dvdsval2 |
|
54 |
16 31 22 53
|
syl3anc |
|
55 |
21 54
|
mpbid |
|
56 |
|
nnre |
|
57 |
56
|
adantl |
|
58 |
|
nngt0 |
|
59 |
58
|
adantl |
|
60 |
57 46 59 49
|
divgt0d |
|
61 |
|
elnnz |
|
62 |
55 60 61
|
sylanbrc |
|
63 |
|
2nn |
|
64 |
|
rppwr |
|
65 |
63 64
|
mp3an3 |
|
66 |
52 62 65
|
syl2anc |
|
67 |
40 66
|
mpd |
|
68 |
27 36 67
|
3eqtr2d |
|
69 |
6 9
|
anim12i |
|
70 |
5
|
nnne0d |
|
71 |
70
|
neneqd |
|
72 |
71
|
intnanrd |
|
73 |
72
|
adantr |
|
74 |
|
gcdn0cl |
|
75 |
69 73 74
|
syl2anc |
|
76 |
75
|
nncnd |
|
77 |
2
|
nnne0d |
|
78 |
|
ax-1cn |
|
79 |
|
divmul |
|
80 |
78 79
|
mp3an2 |
|
81 |
76 3 77 80
|
syl12anc |
|
82 |
68 81
|
mpbid |
|
83 |
4 82
|
eqtr3d |
|