Metamath Proof Explorer


Theorem sqgt0sr

Description: The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion sqgt0sr A 𝑹 A 0 𝑹 0 𝑹 < 𝑹 A 𝑹 A

Proof

Step Hyp Ref Expression
1 0r 0 𝑹 𝑹
2 ltsosr < 𝑹 Or 𝑹
3 sotrieq < 𝑹 Or 𝑹 A 𝑹 0 𝑹 𝑹 A = 0 𝑹 ¬ A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A
4 2 3 mpan A 𝑹 0 𝑹 𝑹 A = 0 𝑹 ¬ A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A
5 1 4 mpan2 A 𝑹 A = 0 𝑹 ¬ A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A
6 5 necon2abid A 𝑹 A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A A 0 𝑹
7 m1r -1 𝑹 𝑹
8 mulclsr A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 𝑹
9 7 8 mpan2 A 𝑹 A 𝑹 -1 𝑹 𝑹
10 ltasr A 𝑹 -1 𝑹 𝑹 A < 𝑹 0 𝑹 A 𝑹 -1 𝑹 + 𝑹 A < 𝑹 A 𝑹 -1 𝑹 + 𝑹 0 𝑹
11 9 10 syl A 𝑹 A < 𝑹 0 𝑹 A 𝑹 -1 𝑹 + 𝑹 A < 𝑹 A 𝑹 -1 𝑹 + 𝑹 0 𝑹
12 addcomsr A 𝑹 -1 𝑹 + 𝑹 A = A + 𝑹 A 𝑹 -1 𝑹
13 pn0sr A 𝑹 A + 𝑹 A 𝑹 -1 𝑹 = 0 𝑹
14 12 13 eqtrid A 𝑹 A 𝑹 -1 𝑹 + 𝑹 A = 0 𝑹
15 0idsr A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 + 𝑹 0 𝑹 = A 𝑹 -1 𝑹
16 9 15 syl A 𝑹 A 𝑹 -1 𝑹 + 𝑹 0 𝑹 = A 𝑹 -1 𝑹
17 14 16 breq12d A 𝑹 A 𝑹 -1 𝑹 + 𝑹 A < 𝑹 A 𝑹 -1 𝑹 + 𝑹 0 𝑹 0 𝑹 < 𝑹 A 𝑹 -1 𝑹
18 11 17 bitrd A 𝑹 A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A 𝑹 -1 𝑹
19 mulgt0sr 0 𝑹 < 𝑹 A 𝑹 -1 𝑹 0 𝑹 < 𝑹 A 𝑹 -1 𝑹 0 𝑹 < 𝑹 A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹
20 19 anidms 0 𝑹 < 𝑹 A 𝑹 -1 𝑹 0 𝑹 < 𝑹 A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹
21 18 20 syl6bi A 𝑹 A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹
22 mulcomsr -1 𝑹 𝑹 A = A 𝑹 -1 𝑹
23 22 oveq1i -1 𝑹 𝑹 A 𝑹 -1 𝑹 = A 𝑹 -1 𝑹 𝑹 -1 𝑹
24 mulasssr -1 𝑹 𝑹 A 𝑹 -1 𝑹 = -1 𝑹 𝑹 A 𝑹 -1 𝑹
25 mulasssr A 𝑹 -1 𝑹 𝑹 -1 𝑹 = A 𝑹 -1 𝑹 𝑹 -1 𝑹
26 23 24 25 3eqtr3i -1 𝑹 𝑹 A 𝑹 -1 𝑹 = A 𝑹 -1 𝑹 𝑹 -1 𝑹
27 m1m1sr -1 𝑹 𝑹 -1 𝑹 = 1 𝑹
28 27 oveq2i A 𝑹 -1 𝑹 𝑹 -1 𝑹 = A 𝑹 1 𝑹
29 26 28 eqtri -1 𝑹 𝑹 A 𝑹 -1 𝑹 = A 𝑹 1 𝑹
30 29 oveq2i A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 = A 𝑹 A 𝑹 1 𝑹
31 mulasssr A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 = A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹
32 mulasssr A 𝑹 A 𝑹 1 𝑹 = A 𝑹 A 𝑹 1 𝑹
33 30 31 32 3eqtr4i A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 = A 𝑹 A 𝑹 1 𝑹
34 mulclsr A 𝑹 A 𝑹 A 𝑹 A 𝑹
35 1idsr A 𝑹 A 𝑹 A 𝑹 A 𝑹 1 𝑹 = A 𝑹 A
36 34 35 syl A 𝑹 A 𝑹 A 𝑹 A 𝑹 1 𝑹 = A 𝑹 A
37 36 anidms A 𝑹 A 𝑹 A 𝑹 1 𝑹 = A 𝑹 A
38 33 37 eqtrid A 𝑹 A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 = A 𝑹 A
39 38 breq2d A 𝑹 0 𝑹 < 𝑹 A 𝑹 -1 𝑹 𝑹 A 𝑹 -1 𝑹 0 𝑹 < 𝑹 A 𝑹 A
40 21 39 sylibd A 𝑹 A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A 𝑹 A
41 mulgt0sr 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 A 𝑹 A
42 41 anidms 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 A 𝑹 A
43 42 a1i A 𝑹 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 A 𝑹 A
44 40 43 jaod A 𝑹 A < 𝑹 0 𝑹 0 𝑹 < 𝑹 A 0 𝑹 < 𝑹 A 𝑹 A
45 6 44 sylbird A 𝑹 A 0 𝑹 0 𝑹 < 𝑹 A 𝑹 A
46 45 imp A 𝑹 A 0 𝑹 0 𝑹 < 𝑹 A 𝑹 A