Metamath Proof Explorer


Theorem sqlecan

Description: Cancel one factor of a square in a <_ comparison. Unlike lemul1 , the common factor A may be zero. (Contributed by NM, 17-Jan-2008)

Ref Expression
Assertion sqlecan A 0 A B 0 B A 2 B A A B

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0 A 0 A 0 < A 0 = A
3 1 2 mpan A 0 A 0 < A 0 = A
4 recn A A
5 sqval A A 2 = A A
6 4 5 syl A A 2 = A A
7 6 breq1d A A 2 B A A A B A
8 7 3ad2ant1 A B A 0 < A A 2 B A A A B A
9 lemul1 A B A 0 < A A B A A B A
10 8 9 bitr4d A B A 0 < A A 2 B A A B
11 10 3exp A B A 0 < A A 2 B A A B
12 11 exp4a A B A 0 < A A 2 B A A B
13 12 pm2.43a A B 0 < A A 2 B A A B
14 13 adantrd A B 0 B 0 < A A 2 B A A B
15 14 com23 A 0 < A B 0 B A 2 B A A B
16 sq0 0 2 = 0
17 0le0 0 0
18 16 17 eqbrtri 0 2 0
19 recn B B
20 19 mul01d B B 0 = 0
21 18 20 breqtrrid B 0 2 B 0
22 21 adantl 0 = A B 0 2 B 0
23 oveq1 0 = A 0 2 = A 2
24 oveq2 0 = A B 0 = B A
25 23 24 breq12d 0 = A 0 2 B 0 A 2 B A
26 25 adantr 0 = A B 0 2 B 0 A 2 B A
27 22 26 mpbid 0 = A B A 2 B A
28 27 adantrr 0 = A B 0 B A 2 B A
29 breq1 0 = A 0 B A B
30 29 biimpa 0 = A 0 B A B
31 30 adantrl 0 = A B 0 B A B
32 28 31 2thd 0 = A B 0 B A 2 B A A B
33 32 ex 0 = A B 0 B A 2 B A A B
34 33 a1i A 0 = A B 0 B A 2 B A A B
35 15 34 jaod A 0 < A 0 = A B 0 B A 2 B A A B
36 3 35 sylbid A 0 A B 0 B A 2 B A A B
37 36 imp31 A 0 A B 0 B A 2 B A A B