Metamath Proof Explorer


Theorem sqmuld

Description: Distribution of square over multiplication. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
mulexpd.2 φ B
Assertion sqmuld φ A B 2 = A 2 B 2

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 mulexpd.2 φ B
3 sqmul A B A B 2 = A 2 B 2
4 1 2 3 syl2anc φ A B 2 = A 2 B 2