Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqmuli
Next ⟩
sqdivi
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqmuli
Description:
Distribution of square over multiplication.
(Contributed by
NM
, 3-Sep-1999)
Ref
Expression
Hypotheses
sqval.1
⊢
A
∈
ℂ
sqmul.2
⊢
B
∈
ℂ
Assertion
sqmuli
⊢
A
⁢
B
2
=
A
2
⁢
B
2
Proof
Step
Hyp
Ref
Expression
1
sqval.1
⊢
A
∈
ℂ
2
sqmul.2
⊢
B
∈
ℂ
3
sqmul
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
⁢
B
2
=
A
2
⁢
B
2
4
1
2
3
mp2an
⊢
A
⁢
B
2
=
A
2
⁢
B
2