Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqne0
Next ⟩
resqcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqne0
Description:
A number is nonzero iff its square is nonzero.
(Contributed by
NM
, 11-Mar-2006)
Ref
Expression
Assertion
sqne0
⊢
A
∈
ℂ
→
A
2
≠
0
↔
A
≠
0
Proof
Step
Hyp
Ref
Expression
1
sqeq0
⊢
A
∈
ℂ
→
A
2
=
0
↔
A
=
0
2
1
necon3bid
⊢
A
∈
ℂ
→
A
2
≠
0
↔
A
≠
0