Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqneg
Next ⟩
sqsubswap
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqneg
Description:
The square of the negative of a number.
(Contributed by
NM
, 15-Jan-2006)
Ref
Expression
Assertion
sqneg
⊢
A
∈
ℂ
→
−
A
2
=
A
2
Proof
Step
Hyp
Ref
Expression
1
mul2neg
⊢
A
∈
ℂ
∧
A
∈
ℂ
→
−
A
⁢
−
A
=
A
⁢
A
2
1
anidms
⊢
A
∈
ℂ
→
−
A
⁢
−
A
=
A
⁢
A
3
negcl
⊢
A
∈
ℂ
→
−
A
∈
ℂ
4
sqval
⊢
−
A
∈
ℂ
→
−
A
2
=
−
A
⁢
−
A
5
3
4
syl
⊢
A
∈
ℂ
→
−
A
2
=
−
A
⁢
−
A
6
sqval
⊢
A
∈
ℂ
→
A
2
=
A
⁢
A
7
2
5
6
3eqtr4d
⊢
A
∈
ℂ
→
−
A
2
=
A
2