Metamath Proof Explorer


Theorem sqnprm

Description: A square is never prime. (Contributed by Mario Carneiro, 20-Jun-2015)

Ref Expression
Assertion sqnprm A ¬ A 2

Proof

Step Hyp Ref Expression
1 zre A A
2 1 adantr A A 2 A
3 absresq A A 2 = A 2
4 2 3 syl A A 2 A 2 = A 2
5 2 recnd A A 2 A
6 5 abscld A A 2 A
7 6 recnd A A 2 A
8 7 sqvald A A 2 A 2 = A A
9 4 8 eqtr3d A A 2 A 2 = A A
10 simpr A A 2 A 2
11 9 10 eqeltrrd A A 2 A A
12 nn0abscl A A 0
13 12 adantr A A 2 A 0
14 13 nn0zd A A 2 A
15 sq1 1 2 = 1
16 prmuz2 A 2 A 2 2
17 16 adantl A A 2 A 2 2
18 eluz2gt1 A 2 2 1 < A 2
19 17 18 syl A A 2 1 < A 2
20 19 4 breqtrrd A A 2 1 < A 2
21 15 20 eqbrtrid A A 2 1 2 < A 2
22 5 absge0d A A 2 0 A
23 1re 1
24 0le1 0 1
25 lt2sq 1 0 1 A 0 A 1 < A 1 2 < A 2
26 23 24 25 mpanl12 A 0 A 1 < A 1 2 < A 2
27 6 22 26 syl2anc A A 2 1 < A 1 2 < A 2
28 21 27 mpbird A A 2 1 < A
29 eluz2b1 A 2 A 1 < A
30 14 28 29 sylanbrc A A 2 A 2
31 nprm A 2 A 2 ¬ A A
32 30 30 31 syl2anc A A 2 ¬ A A
33 11 32 pm2.65da A ¬ A 2