Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|
2 |
|
2z |
|
3 |
2
|
a1i |
|
4 |
|
id |
|
5 |
3 4
|
zmulcld |
|
6 |
5
|
zcnd |
|
7 |
|
binom21 |
|
8 |
6 7
|
syl |
|
9 |
1 8
|
sylan9eqr |
|
10 |
9
|
oveq1d |
|
11 |
|
2cnd |
|
12 |
|
zcn |
|
13 |
11 12
|
sqmuld |
|
14 |
|
sq2 |
|
15 |
14
|
a1i |
|
16 |
15
|
oveq1d |
|
17 |
13 16
|
eqtrd |
|
18 |
|
mulass |
|
19 |
18
|
eqcomd |
|
20 |
11 11 12 19
|
syl3anc |
|
21 |
|
2t2e4 |
|
22 |
21
|
a1i |
|
23 |
22
|
oveq1d |
|
24 |
20 23
|
eqtrd |
|
25 |
17 24
|
oveq12d |
|
26 |
25
|
oveq1d |
|
27 |
26
|
oveq1d |
|
28 |
|
4z |
|
29 |
28
|
a1i |
|
30 |
|
zsqcl |
|
31 |
29 30
|
zmulcld |
|
32 |
31
|
zcnd |
|
33 |
29 4
|
zmulcld |
|
34 |
33
|
zcnd |
|
35 |
32 34
|
addcld |
|
36 |
|
pncan1 |
|
37 |
35 36
|
syl |
|
38 |
27 37
|
eqtrd |
|
39 |
38
|
adantr |
|
40 |
10 39
|
eqtrd |
|
41 |
40
|
oveq1d |
|
42 |
|
4cn |
|
43 |
42
|
a1i |
|
44 |
30
|
zcnd |
|
45 |
43 44 12
|
adddid |
|
46 |
45
|
eqcomd |
|
47 |
46
|
oveq1d |
|
48 |
47
|
adantr |
|
49 |
|
4t2e8 |
|
50 |
49
|
a1i |
|
51 |
50
|
eqcomd |
|
52 |
51
|
oveq2d |
|
53 |
30 4
|
zaddcld |
|
54 |
53
|
zcnd |
|
55 |
|
2cnne0 |
|
56 |
55
|
a1i |
|
57 |
|
4ne0 |
|
58 |
42 57
|
pm3.2i |
|
59 |
58
|
a1i |
|
60 |
|
divcan5 |
|
61 |
54 56 59 60
|
syl3anc |
|
62 |
12
|
sqvald |
|
63 |
62
|
oveq1d |
|
64 |
12
|
mulid1d |
|
65 |
64
|
eqcomd |
|
66 |
65
|
oveq2d |
|
67 |
|
1cnd |
|
68 |
|
adddi |
|
69 |
68
|
eqcomd |
|
70 |
12 12 67 69
|
syl3anc |
|
71 |
63 66 70
|
3eqtrd |
|
72 |
71
|
oveq1d |
|
73 |
52 61 72
|
3eqtrd |
|
74 |
73
|
adantr |
|
75 |
41 48 74
|
3eqtrd |
|