Metamath Proof Explorer


Theorem sqoddm1div8z

Description: A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021)

Ref Expression
Assertion sqoddm1div8z N ¬ 2 N N 2 1 8

Proof

Step Hyp Ref Expression
1 odd2np1 N ¬ 2 N k 2 k + 1 = N
2 1 biimpa N ¬ 2 N k 2 k + 1 = N
3 eqcom 2 k + 1 = N N = 2 k + 1
4 sqoddm1div8 k N = 2 k + 1 N 2 1 8 = k k + 1 2
5 4 adantll N ¬ 2 N k N = 2 k + 1 N 2 1 8 = k k + 1 2
6 mulsucdiv2z k k k + 1 2
7 6 ad2antlr N ¬ 2 N k N = 2 k + 1 k k + 1 2
8 5 7 eqeltrd N ¬ 2 N k N = 2 k + 1 N 2 1 8
9 8 ex N ¬ 2 N k N = 2 k + 1 N 2 1 8
10 3 9 syl5bi N ¬ 2 N k 2 k + 1 = N N 2 1 8
11 10 rexlimdva N ¬ 2 N k 2 k + 1 = N N 2 1 8
12 2 11 mpd N ¬ 2 N N 2 1 8